An Update (Part 2)

Welcome back peeps! Here’s the second part of the overview/highlights of what we’ve been getting up to so far on the course:

Module 2: Diversity & Evolution of Insects

This module was a nice transition from the previous module content-wise. The first day was a mixed bag, it started with a lecture from Prof. Simon Leather (@EntoProf) on the history of entomology as a subject and insect paleontology (come on, who doesn’t love a bit of Meganeura spp.). Followed by Dr. Andy Cherrill giving a lecture on intraspecific variation. Theeeeen, back to Simon, with a lecture on the super weird, awe-inducing and ever so slightly ridiculous aphid life cycle. The day concluded with the first guest speaker for this module: Professor Tony Dixon! He gave us a lecture on aphid thermobiology and coccinellids (ladybirds, namely on generation time and their usage in biocontrol). He was Simon’s PhD supervisor! It was a privilege to be lectured by someone who has been in the game for so long, is still publishing research and has taught one of our lecturers. The next day was also a healthy mix of topics, covering soil biodiversity to aquatic insects and estimating insect species diversity.

Leading on from the previous day, we had a lecture on Acari (ticks and mites). The study of non-insect arthropods meshes nicely with entomology. As entomologists, it is important for us to be able to identify relatives and to understand their ecological interactions. The rest of the day was full of the mighty Odonata! Starting with a series of lectures from guest speaker Steve Brooks (once again, from NHM) on the identification of British Anisoptera (dragonflies) and Zygoptera (damselfies). The afternoon was spent gleefully identifying odonatans using their larval exuviae with The British Dragonfly Society’s Shropshire County Recorder, Sue Rees Evans!

20171025_143804[1]

The larval exuviae of the Southern Hawker (Aeshna cyanea). Dragonfly larvae are predatory and possess a labial “mask”, a modified labium tipped with pincers. The mask is fired out to grab and immobilise prey. 

20171025_161529[1]

The larval exuviae of a damselfly. The appendages on the rear are called lamellae and they aid gas exchange.

With Odonata checked off the list, we had a day dedicated to an assortment of insect orders with Dr. Mike Copeland. To name a few, we covered the Phasmida, Dermaptera and Neuroptera. The following day started off with a practical session in which we unleashed the fury of lacewing larvae onto some chubby mealybugs; a little taster of what is to come in the Commercial & Practical Biological Control module!

20171027_103020[1]

A lacewing larvae chowing down on a mealy bug. They are voracious predators with specialised mandibles used to extract the bodily fluids of their prey.

The module and week ended on a mellow note, with another chill session of pinning and curation. Practice makes perfect!

Module 3: Experimental Design & Analysis

Being able to design an experiment to test a hypothesis and then analysing the acquired data using the appropriate statistical analyses, holds fundamental importance in science. Once again, the course is full of people with varying levels of experience in different areas, and statistics is no exception. The module reinforced the importance of a robust experimental design, and introduced the cohort to the statistical software R and how to run a range of tests using it. Of course, I would rather have fun practicals over this in a heartbeat, but you can’t replace bread and butter with more filling and expect to have a sandwich! Having just finished this module, we start the Commercial & Practical Biological Control module on Monday! *crowd cheers* HUZZA!!

Soooooo…that’s it from me for now! Linzi will be posting an article on Tuesday on insects which survive in extreme environments and their adaptations to the hostile conditions they live in.

Until next time!

 

By Aqib Ali  (Twitter:@EntoAqib , Email: Aqib1996@hotmail.co.uk , Linkedin: Aqib Ali)

MSc Entomology Twitter: @EntoMasters

Advertisements

Insect flight – an evolutionary development that shaped the world

Flying animals have had a major impact on nonflying organisms. Briefly consider the ecological and evolutionary interrelationships between pollinators and flowers, or between mosquitoes, the parasites they transmit and humans. Even a cursory glance at the manifold relationships flying insects have with all other forms of terrestrial life evaporates any doubt whether the world would be a very different place if they had never evolved.

Continue reading